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mixing. Part 1. Harmonic modulation

By V. K. S IDDAVARAM AND G. M. HOMSY
Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070, USA

(Received 8 July 2005 and in revised form 3 February 2006)

We study the effects of gravity modulation on the mixing characteristics of two
interdiffusing miscible fluids initially in two vertical regions separated by a thin
diffusion layer. We formulate the case of general gravity modulation of arbitrary
orientation, amplitude g and characteristic frequency ω. For harmonic vertical
modulation in two dimensions, the time-dependent Boussinesq equations are solved
numerically and the evolution of the interface between the fluids is observed. The
problem is governed by six parameters: the Grashof number, Gr = (�ρ/ρ̄)g(l3ν/ν

2),
based on the viscous length scale, lν =

√
ν/ω; the Schmidt number, Sc= ν/D; the

aspect ratio, A; the non-dimensional length of the domain, l; the steepness of the
initial concentration profile, δ; and the phase angle of the harmonic modulation, φ.
When φ = 0, π, we observe four different flow regimes with increasing Gr: neutral
oscillations at the forcing frequency; successive folds which propagate diffusively;
localized shear instabilities; and both shear and convective instabilities leading to
rapid mixing. In the last regime, the flow is disordered but not chaotic. By varying
Sc, it was determined that the mechanism for the formation of these shear and
convective instabilities is inertial. When φ �= 0 or π, the flow is similar to a modulated
lock exchange flow.

1. Introduction
Mixing plays an important role in many engineering applications. Some processes

try to suppress mixing, while many others try to enhance it. A few of the applications
in which mixing is important are heat transfer, gas dispersion, chemical reactions
including combustion, and nucleation and growth of colloidal systems. In many of
the processes listed above buoyancy associated with Earth’s gravity plays a major
role in mixing fluids efficiently. In the microgravity environment such a mechanism
is typically absent or of very little importance. For example, in the case of boiling in
Earth’s gravity, the heat transport is enhanced by the convective mixing associated
with buoyant rise of bubbles, a mechanism that is essentially absent in the microgravity
environment. Combustion is another such example that involves buoyancy forces
resulting from large density differences. These buoyancy forces are of a much smaller
magnitude in the microgravity environment.

Jules et al. (2002) found that the microgravity environment, e.g. that aboard the
International Space Station (ISS), is characterized by low mean accelerations which
are O(10−6) ge (ge is the gravity on Earth) and fluctuations that are two or three orders
of magnitude above the mean, i.e. O(10−4 − 10−3) ge. Thomson et al. (1997) analysed
the data collected during the NASA SL-J mission that flew on September 13–20,
1993 and found that the typical acceleration field consists of periodic components,
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random components with small auto-correlation time, and a white noise background.
These gravity fluctuations are collectively termed gravity jitters or g-jitter. Gravity
jitters interact with density and concentration gradients resulting in time-dependent,
three-dimensional body forces, generating a flow. An illustration of the effects of
flows caused by g-jitter can be found in the experiments of Radcliffe et al. (1988) who
attempted to grow organic crystals in Low Earth orbit. The quality of the crystals
grown was poorer than expected, which was attributed to the effects of g-jitter. In
these and other applications, it is therefore important to understand the nature of the
flows generated by g-jitter.

There is a small but significant literature on g-jitter convection. Gresho & Sani
(1970) studied the effect of a time-modulated vertical gravity field on the Rayleigh–
Bénard instability of a heated fluid layer and concluded that the effect of gravity
modulation is to change the critical Rayleigh number. In particular, a layer of fluid
heated from above, which is normally stable because of the stable density stratification,
may be destabilized by gravity modulation and a layer of fluid heated from below
may be stabilized. They also noted that this result is analogous to the stabilization
of an inverted pendulum by suitable vertical oscillations of the pivot. These results
were observed experimentally by Rogers et al. (2000) and confirmed numerically by
the three-dimensional studies of Biringen & Peltier (1990).

Many recent studies have focused on the effect of jitter on convective flows driven
by mean gravity, e.g. Farooq & Homsy (1996), Chen & Chen (1999), and Christov &
Homsy (2001). The model problem of choice for most of these investigations was
convection in an infinite vertical slot with differentially heated walls. The main
advantage of this model is that it provides the context of a relatively simple base
flow in which to study the instabilities observed in more complicated situations. Some
studies, e.g. Chen & Chen (1999), exclude any vertical stratification, whereas others,
e.g. Farooq & Homsy (1996), include it. When vertical stratification is excluded the
horizontally stratified problem has an exact linear parallel flow solution with no
potential for parametric instability. The inclusion of vertical stratification, while still
admitting a parallel flow, has the potential for parametric instability. Chen & Chen
(1999) observed synchronous and sub-harmonic instability modes for a low-Prandt-
number fluid and quasi-periodic and sub-harmonic instability modes for a high-Pr
fluid. From the kinetic energy analysis of the perturbation for a low-Pr fluid they
found that the dominant contribution comes from the transfer of energy from the
mean flow to the disturbance due to Reynolds stresses. Therefore the instabilities are
essentially driven by viscous shear. By a similar analysis for a high-Pr fluid they found
that the instabilities are buoyancy driven. They also observed that gravity modulation
can either stabilize or destabilize the flow.

Farooq & Homsy (1996) studied the effect of gravity modulation on vertical slots
with both horizontal and vertical stratification. There are three types of modes in
the absence of gravity modulation: travelling modes associated with the instability
of the boundary layers on the sidewalls, internal gravity waves associated with the
vertical density stratification, and stationary convective modes. When the jitter is
weak, they found resonant interactions with the natural modes of the unmodulated
problem which lead to a shift in the critical Rayleigh numbers. When the jitter is
of the same magnitude as the mean gravity, they found that the parallel-flow modes
can be destabilized by gravity modulation. They observed parametric instability for
sufficiently large modulation amplitude. They noted that the parallel-flow equations
do not have any nonlinear saturation mechanisms, which allows the solution to grow
without bound. To circumvent this difficulty they analysed a reduced-order (two
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mode) nonlinear model and observed nonlinear coupling between the two modes
which leads to saturation. Christov & Homsy (2001) considered this problem in more
detail by solving the full nonlinear Boussinesq equations numerically. They found that
the nonlinear two-dimensional solutions for the case of steady gravity agree well with
the linear stability calculations of Bergholz (1978). They too observed parametric
instability when the modulation amplitude was sufficiently large. From an energy
analysis, they concluded that phase lag between the flow and temperature responses
due to fluid inertia is the primary mechanism of the parametric instability. They
discovered the existence of a parameter-independent two-dimensional flow structure
that is responsible for stabilization of the unstable one-dimensional flow. They found
that jitter is strongly coupled with the vertical stratification, exciting Rayleigh–Bénard
modes for unstable stratification and suppressing the instability modes for stable
stratification.

Studies have also been done for the case when the gravity vector orientation
is parallel to that of the thermal gradient. Lizée & Alexander (1997) studied the
thermovibrational flow in a laterally heated cavity subject to large-amplitude harmonic
horizontal accelerations. They find a sequence of period-doubling bifurcations as the
jitter amplitude is varied, leading to chaotic regimes at large amplitudes.

In a study that provides much of the motivation for the current work, Duval &
Jacqmin (1990) considered the g-jitter convection of two diffusing miscible liquids
of differing densities under an oscillating vertical gravitational field with zero mean.
When the density difference between the fluids is small, they observed that the long-
time mixing is dominated by mass diffusion. They also found that over the time
considered, the diffusion layer remains sharp and undeformed. Although the fluids
are miscible, we refer to this layer as an ‘interface’. For large density differences they
identified two types of instabilities: Kelvin–Helmholtz instability associated with the
growth and oscillation of the interface, and ‘chaotic instability’ associated with the
breakup of the interface. Chaotic instability occurs when a parameter (which they call
the ‘Stokes-Reynolds number’) exceeds a critical value of 5.25. This Stokes-Reynolds
number corresponds to the Grashof number, Gr, in our study and is defined later.
They observed that the interface evolves like a vortex sheet. Below the critical Stokes-
Reynolds number, the destabilization of the interface through the Kelvin–Helmholtz
instability results in its deformation into wavy structures. In some parametric regions,
these structures oscillate in time and in others they are quasi-steady. Above the critical
Stokes-Reynolds number the interface breaks into small concentration pockets. They
proposed that the initial breakup of the interface occurs by means of Rayleigh–
Taylor instability. Duval & Jacqmin (1990) limited their attention to a relatively
narrow parameter range. In their studies, the Schmidt number, Sc, is O(102), the
Grashof number, Gr, is less than 15, and the initial phase angle, φ, is zero. They have
not studied the effect of Sc, φ, and aspect ratio, A, on the critical Stokes-Reynolds
number. Our study will widen this parameter range considerably with the aim of
elucidating the physical mechanisms and further characterizing the flows. We vary Sc
from 1 (Sc for gases is O(1)) to 100. Our motivation for varying Sc is to determine
if the Rayleigh number, Ra = Gr Sc is a more appropriate parameter for our studies,
rather than the Grashof number, Gr. We will also vary Gr from 1 to 25, examine
the dependence of the critical Stokes-Reynolds number, ReS,c on Sc and A, and
investigate the dynamics of point quantities in order to determine whether the flow is
chaotic. Finally we investigate the effect of varying the phase angle, φ.

Duval (1992) also studied the effect of a time-dependent gravity field on the mixing
of two fluids. The gravity field consists of both steady and oscillatory components. He
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Figure 1. Schematic of the three-dimensional problem.

observed the formation of two distinct structures depending upon whether the gravity
field is dominated by the steady component or the oscillatory component. When the
steady component of the gravity dominates, the interface is deformed into a ‘whorl’
structure and when the oscillatory component dominates the interface is deformed
into ‘tendrils’. In the parametric region that he considered, two flow regimes occur:
convective and chaotic. In the convective flow regime, the flow field is oscillatory,
the phase-space trajectories associated with the velocities are elliptical, and the power
spectrum indicates that the flow field responds at a frequency corresponding to the
frequency of gravity modulation. In the chaotic regime, the flow field is aperiodic,
the phase-space trajectories associated with the velocities are irregular, and the power
spectrum shows a broadband response.

In all of the above studies, the gravity modulation is harmonic. Drolet & Viñals
(1997) studied the problem of the onset of oscillatory instabilities under stochastic
modulation and concluded that stochastic jitter may have qualitatively different
effects than simple deterministic models of jitter. More specifically, they studied the
effect of stochastic modulation on a system with O(2) symmetry that exhibits Hopf
bifurcation in the absence of modulation. The study included a random component
in both the control parameter of the bifurcation and the modulation amplitude. At
a Hopf bifurcation in a periodically modulated system, the trivial state loses stability
to either travelling waves when the modulation amplitude is small, or standing waves
when the amplitude is sufficiently large. They concluded that when the modulation
amplitude has a stochastic component, the threshold for the onset of instability in
the standing-wave regime is shifted from its deterministic location and the region of
primary bifurcation to travelling waves disappears.

The main objective of the current study is to investigate the physical mechanisms
by which g-jitter affects the mixing characteristics of two miscible fluids which initially
meet at a sharp vertical interface.

2. General problem formulation
Since the aim of this study is to investigate physical mechanisms, we analyse a model

problem, namely a box filled with two miscible fluids with no surface tension which
initially meet at a sharp but continuous vertical interface. Figure 1 shows a schematic
of the general three-dimensional problem. The gravity vector is time-dependent and
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three-dimensional. As pointed out in the introduction, gravity jitters consist of both
harmonic and random components. Therefore, we want to develop a formulation that
is general enough to admit both deterministic and stochastic models of gravity jitters.
In the present paper we focus mainly on the effects of harmonic jitter. The effects of
stochastic gravity modulation on fluid mixing will be investigated in a future article.

Without any loss of generality, we can assume that the lighter fluid, of density ρ̄, is
on the right-hand side of the cavity and the heavier fluid, of density ρ̄ +�ρ, is on the
left-hand side. We assume that the density difference between the fluids, �ρ, is small,
i.e. �ρ/ρ̄ � 1 and that the following equation of state governs the two fluids:

ρ = ρ̄(1 + β�C) where β =
1

ρ̄

∂ρ

∂C
.

In the above equation, C is the concentration of the heavier fluid. Therefore, without
any loss of generality we can take C = 1 on the left boundary wall of the cavity and
C = 0 on the right boundary wall. Since we assume that the two fluids are miscible, C

varies smoothly from 1 to 0 inside the cavity, i.e. the density ρ varies smoothly from
ρ̄ + �ρ to ρ̄. We now apply the Boussinesq approximation and obtain the following
equations:

∇ · V = 0, (2.1)

ρ̄
DV
Dt

= −∇p + µ∇2V + ρg(t), (2.2)

DC

Dt
= D∇2C, (2.3)

When deriving the above equations we have also assumed that the coefficient of
dynamic viscosity, µ, and the coefficient of mass diffusion, D, are independent of
concentration. V is the dimensional velocity vector and p is the dimensional pressure.
The gravitational field may consist of a mean and a fluctuating part

g = ḡ + g′.

We pick a characteristic time scale, T , based on the power spectrum of g(t),
where g(t) is the magnitude of the gravity vector, i.e. g(t) = |g(t)|. When the gravity
modulation is deterministic we choose T = 1/ω, where ω is the frequency at which the
power spectrum response of g(t) is assumed to have a maximum. When the gravity
modulation is stochastic (to be considered in a future paper) we choose the time scale
based on the form of the autocorrelation of g(t), which is assumed to have a structure
allowing a characteristic frequency to be defined. The length scale is chosen as
the viscous length, lν =

√
ν/ω, where ν = µ/ρ̄ is the kinematic viscosity. The velocity

scale is chosen as the buoyancy velocity, Uc = (�ρ/ρ̄)(g/ω). Here g is the characteristic
scale of g(t), i.e. the maximum magnitude of the gravity vector, |g(t)|max, when the
modulation is deterministic and the standard deviation of g(t) when the modulation
is stochastic. This particular choice of the velocity scaling was obtained after an order
of magnitude analysis of the momentum equation and equating the magnitudes of the
viscous diffusion and buoyancy force terms. Velocity, distance, time, and pressure are
scaled using Uc, lν , 1/ω, and ρ̄U 2

c respectively. For notational simplicity, we use the
same variables for both the non-dimensional and dimensional variables. The resulting
non-dimensionalized equations are

∇ · V = 0, (2.4)
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Figure 2. Schematic of (a) the two-dimensional problem (b) the initial and boundary
conditions in dimensionless terms.

∂V
∂t

+ GrV · ∇V = −Gr∇p + ∇2V +
ρ

�ρ
( ḡ + g′), (2.5)

∂C

∂t
+ GrV · ∇C =

1

Sc
∇2C. (2.6)

In the above equations

Gr =
UcT

lν
=

�ρ

ρ̄

g

ν1/2ω3/2
=

�ρ

ρ̄
g

l3ν
ν2

is a Grashof number, Sc= ν/D is the Schmidt number, and g is scaled as described
above. Ratios of gravitational accelerations (g′

x , ḡx , . . .) also appear in the equations.
Additional parameters are introduced into the problem through the boundary
conditions, which are the non-dimensionalized length of the domain, l =L/lν and
the aspect ratios (A= H/L and A2 = W/L).

3. Two-dimensional vertical harmonic gravity
Since we are interested in a physical understanding of the phenomenon of mixing,

we reduce the complexity of the problem by focusing our attention, at present, on
two-dimensional effects, i.e. w = ∂()/∂z = 0, and assuming that the gravity is entirely
in the vertical direction, i.e. ḡx = ḡz = g′

x = g′
z =0. Since g-jitter is characterized by low

mean and large fluctuations we assume that the gravity field has zero mean and also
that the gravity variation is harmonic, i.e. ḡy = 0 and

gy = cos(t + φ) (3.1)

where φ is the phase angle. These assumptions significantly reduce the number of
parameters. The relevant parameters of the two-dimensional problem are then the
Grashof number, Gr =(�ρ/ρ̄)(g/ω3/2ν1/2); the Schmidt number, Sc= ν/D; the phase
angle, φ; the non-dimensional length of the domain, l = L/lν; and the aspect ratio
of the domain, A= H/L where H and L are the height and length of the domain
respectively. The Grashof number based on the length of the domain is GrL = Grl3.
Figure 2(a) shows a schematic of the simplified model problem.

When the above simplifications are taken into account, the current problem is
similar to the one that has been studied by Duval & Jacqmin (1990), which provides
a validation while also allowing us to pursue some issues in more detail.
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We now rewrite equations (2.4)–(2.6) taking the above simplifications into account:

∂u

∂x
+

∂v

∂y
= 0, (3.2)

∂u

∂t
+ Gr

(
u

∂u

∂x
+ v

∂u

∂y

)
= −Gr

∂p

∂x
+

(
∂2u

∂x2
+

∂2u

∂y2

)
, (3.3)

∂v

∂t
+ Gr

(
u

∂v

∂x
+ v

∂v

∂y

)
= −Gr

∂p

∂y
+

(
∂2v

∂x2
+

∂2v

∂y2

)
+

ρ

�ρ
cos(t + φ), (3.4)

∂C

∂t
+ Gr

(
u

∂C

∂x
+ v

∂C

∂y

)
=

1

Sc

(
∂2C

∂x2
+

∂2C

∂y2

)
. (3.5)

In the above equations, u is the x (horizontal) component of velocity and v is the y

(vertical) component of velocity.
The above equations are now recast into stream function–vorticity formulation.

We introduce a stream function, ψ such that u = ∂ψ/∂y and v = −∂ψ/∂x, and
ξ = ∂v/∂x − ∂u/∂y is the out-of-plane vorticity. The equations become

∂2ψ

∂x2
+

∂2ψ

∂y2
= −ξ, (3.6)

∂ξ

∂t
+ Gr

(
u

∂ξ

∂x
+ v

∂ξ

∂y

)
=

(
∂2ξ

∂x2
+

∂2ξ

∂y2

)
+

(
∂C

∂x

)
cos(t + φ), (3.7)

∂C

∂t
+ Gr

(
u

∂C

∂x
+ v

∂C

∂y

)
=

1

Sc

(
∂2C

∂x2
+

∂2C

∂y2

)
. (3.8)

Since we have assumed that the two fluids are miscible, there is no discontinuity in
the concentration at the interface (x =0.5l), but since we have also assumed that the
initial interface is sharp, the width of the region over which the initial concentration
changes from 1 to 0 must be very small. We therefore choose the following function
to represent the initial concentration field:

t = 0: C = 1
2

erfc

(
x − 0.5l

δ

)
. (3.9)

Note that the above initial condition introduces an additional parameter into the
problem: δ, the steepness of the initial concentration profile, which is used to eliminate
discontinuities. It has been found in many similar problems that the dependence on
δ is very slight.

We assume that the fluids are initially at rest. Therefore

t = 0: ξ = 0, ψ = 0. (3.10)

The boundary conditions are as follows:

x = 0, l: u =
∂v

∂x
=

∂C

∂x
= 0, (3.11)

which corresponds to no fluid penetration, no shear stress, and no mass flux along
the vertical walls; and

y = 0, lA: u = v =
∂C

∂y
= 0, (3.12)



452 V. K. Siddavaram and G. M. Homsy

which corresponds to no fluid penetration, no slip, and no mass flux along the
horizontal walls. We will be solving equations (3.6)–(3.8), subject to equations (3.9)–
(3.12). Figure 2(b) shows a sketch of the domain along with the boundary conditions.

Consideration of the boundary conditions which specify that the stream function,
vorticity and mass flux vanish along the vertical walls enables us to employ a
Galerkin-type spectral discretization for the variables in the x-direction:

ψ(x, y, t) =
∑

k

ψ̂k(y, t) sin(kαx), (3.13)

ξ (x, y, t) =
∑

k

ξ̂k(y, t) sin(kαx), (3.14)

C(x, y, t) =
∑

k

Ĉk(y, t) cos(kαx). (3.15)

In the above equations k is the wavenumber and α = 2 π/l. For differentiation in the
y-direction we use compact finite differences (see Lele 1992) which are fourth-order
accurate in the interior and third-order at the boundaries. The time integration is fully
explicit and utilizes the classical fourth-order Runge–Kutta scheme. The nonlinear
terms are evaluated in a pseudospectral manner. For the vorticity boundary condition
along the horizontal walls, we use the standard first-order approximation (Roache
1982).

The accuracy of the results has been verified by mesh refinement. We decrease the
mesh size until the results obtained with two successive mesh sizes are within 5% of
each other. When the Gr and Sc are small, a grid that uses 128 modes in the horizontal
direction and 256 nodes in the vertical direction was sufficient to accomplish this.
However, at larger values of Gr and Sc we needed more modes and nodes.

In order to verify the accuracy of the solution we compared our results, for φ =0,
with those from Duval & Jacqmin (1990) (henceforth denoted as DJ). We point
out that the boundary conditions imposed on the sidewalls are different in their
study: they impose a no-slip condition whereas we impose a no-stress condition.
Therefore, the results are not expected to agree well at later times, when the interface
interacts with the sidewalls. We choose the parameter values for case 21 in their
paper: A= 1, Res = 14.86, Sc= 247, Gr/Re2 = 0.5888, Re = 637 and PeD = 1.57 ×
106. We found that the concentration and stream function contours at two different
times t = π and 2π were very similar to those in figures 10(a) and 10(b) in DJ.
They report that when t = π the maximum and minimum values of the stream
function in the flow domain are ψmax = 0.0257 and ψmin = −0.0319. When our results
are suitably normalized, we observe ψmax = 0.0260 and ψmin = −0.0332, which is
in excellent agreement. Similarly when t = 2π, DJ report that ψmax = 0.0203 and
ψmin = −0.033. We observe that ψmax = 0.0271 and ψmin = −0.0486. The agreement is
fair, considering that the interface was very close to the sidewalls and therefore the
boundary conditions on the sidewalls became important.

4. Results
From the governing equations and the initial and boundary conditions it can

be seen that the problem is governed by six parameters: the Grashof number, Gr;
the Schmidt number, Sc; the phase angle, φ; the aspect ratio of the domain, A; the
non-dimensional length of the domain, l, and the steepness of the initial concentration
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profile, δ. The reference values of these parameters are as follows. For the moment, we
fix φ = 0 and Sc= 1, which corresponds to the case of mixing of gases. We fix A= 2
which means that the domain is a vertical narrow cavity. l is fixed at 200 resulting in
a reasonably large domain (two hundred viscous lengths, lν) so that the evolution of
the interface is free from any edge effects over a reasonably long time. δ is set at 5
resulting in a reasonably sharp but continuous interface that is easily resolvable. Gr
was varied from 1 to 25 (resulting in Grashof numbers based on the length of the
domain, (GrL = Grl3) on the order of 108). Various quantities, especially the interfacial
evolution, were studied as a function of time. Note that the results obtained for φ =0
are analogous to the results obtained for φ = π, because φ = 0 corresponds to the
configuration where the heavier fluid is in the left half of the domain, whereas φ = π
corresponds to the reverse configuration, i.e. heavier fluid is in the right half of the
domain.

We observe four different flow patterns as Gr is varied. In what follows, we denote
the ‘interface’ as the contour on which the concentration, C =0.5.

4.1. Very small Gr (Gr < 2)

For small Gr inertia is very weak and the concentration field is dominated by
diffusion. Even after 120 periods, we observe very little deformation of the interface.
The solutions for Gr < 2 show that the interface simply oscillates about the vertical
centreline, x = 0.5l. By examining the power spectrum (not shown) associated with
the vertical velocity at any arbitrary point, we determine that the flow field responds
at a frequency equal to that of the modulation.

4.2. Small to intermediate Gr (2 � Gr < 12)

As Gr is raised above 2, there is significant deformation of the interface and we witness
the formation of a wavy structure for the interface. This structure is generated at
both the top and bottom boundaries. We call these wavy structures ‘folds’ when their
lateral extent is more than five viscous length scales. Figure 3 shows snapshots of these
‘folds’ for Gr = 10. These snapshots clearly indicate that the folds spread laterally and
propagate into the fluid with time. It can also be seen that with time the number
of folds also increases. The temporal evolution of the concentration field and the
interface are also shown in movies 1 and 2 respectively.† To illustrate the formation
of folds more clearly, in figure 4 we zoom in on a rectangular area close to the top
edge of the flow domain, 90 � x � 110 and 360 � y � 400, (the whole flow domain
extent is 0 � x � 200 and 0 � y � 400). The gravity vector is initially pointing upward.
Therefore, in the first quarter-cycle, from t = 0 to t = 1

2
π, the heavier fluid, which is

on the left side of the cavity, starts flowing to the right (in the top half of the cavity)
and the lighter fluid flows to the left (in the bottom half of the cavity). Because of
the vorticity production and the enclosure geometry a clockwise rotating flow results.
Note that because we imposed a no-slip boundary condition on the top and bottom
walls, the fluid does not slip along these walls but a small kink in the interface is
introduced, due to diffusion in the y-direction, very near to the top and bottom walls
(figure 4b, c). When t = 1

2
π, the gravity vector changes direction. However, because

of inertia at finite Gr, the heavier fluid does not immediately return to its initial
position but continues moving to the right (figure 4d, e). At t = π the gravity vector
is at its relative minimum. The rotation is halted and vorticity of the opposite sign
is generated. So, from t = π to t = 3

2
π, the flow field rotates in the counterclockwise

† The movies are available with the online version of the paper.
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Figure 3. Evolution of the interface. The contour line C = 0.5 is shown from t = 3π to
t =11π in increments of π. Gr =10.
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sense (figure 4f, g). When t = 3
2
π, the gravity vector again changes direction, but again

because of inertia, the interface continues rotating in the counterclockwise sense and
the heavier fluid starts moving to the left (figure 4h, i). At the end of the cycle, t =2π
(figure 4i), we distinctly see the deformation of the interface and the formation of
folds at the top and bottom boundaries. Thus we see that periodic production of
vorticity of opposite sign, combined with finite fluid inertia, is responsible for the
production of folds.

The production and propagation of folds continues until they reach the centre of
the domain and begin to interact. As Gr is increased we witness an increase in the
number of folds produced until this point is reached. The maximum number of folds
formed, Nmax, is shown as a function of Gr in figure 5. We count only the folds in
the top half of the domain, the number of folds in the bottom half being the same.
From figure 5, we also see that the maximum number of folds formed varies linearly
with the aspect ratio, i.e. at any particular value of Gr, Nmax for A= 1 is half of that
for A= 2. This suggests that the average vertical propagation speed of the folds is
constant at a given Gr.

Different measures are used to characterize the evolution of the interface with time.
We measure their maximum lateral extent, w. We also plot the distance to which
the folds propagate in the vertical direction. We define this ‘propagation distance’,
γ as the distance (measured from the top edge) beyond which folds lie within 1%
of the x =0.5l centreline. Figure 6 shows a schematic that explains how w and γ

are measured. Figure 7 shows the variation in the maximum lateral extent, w, of the
interface with time for different Gr. The lateral extent increases with time and, at any
given time, flows with larger Gr give rise to folds with larger lateral spread. Figure 8
shows the propagation distance, γ as a function of time. The folds propagate deeper
into the domain and flows with larger Gr leading to faster propagation. Note that the
above results are valid only until the folds begin to interact.

It can be seen from figure 8 that there is a smooth increase in the vertical
propagation distance with time followed by a rapid rise (‘jump’) and this cycle repeats
itself. The typical variation of the vertical propagation distance in between jumps is
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5 10 15 20 25 30 35 40 45 500

20

40

60

80

100

Time (in periods)

Gr = 4
6
8
10

w

Figure 7. Growth of maximum lateral extent, w with time, t .

plotted in figure 9. A square-root fit approximates this variation of γ very well, which
suggests that the propagation of folds is due to diffusion.

It has also been observed that, for small times, the entire mechanism of fold
production and propagation is self-similar for 4 � Gr � 9. This can be observed by
suitably normalizing the vertical propagation distance, γ , and time, t , using powers of
Gr. The functions of Gr that are used to normalized γ and t are chosen such that the
normalized values at which we observe the first jump (in normalized γ ) is the same
for all Gr (although other methods of scaling give similar results). A graph illustrating
this self-similarity is plotted in figure 10, and can be expressed mathematically as

γGr0.53 = f (tGr1.71), (4.1)

Equation (4.1), although a fit to the data, can be further manipulated to give insight
into the mechanisms involved. Adopting the values of 1/2 and 5/3 for the exponents,
and using the fact from figure 9 that the function f is quadratic in its argument, we
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γ (t) = 10.99
√

1.26t − 14.95 + 46.44.

find for the dimensional propagation distance of a fold,

γ ′ ∼
√

νt Gr1/3. (4.2)

Thus, the folds propagate diffusively, but with a rate that is amplified by the flow. The
exponent of 1/3 is suggestive of a Leveque-like convection–diffusion balance in which
vorticity is produced at the ends of the folds (∂C/∂x is non-zero there), and is then
convected to one side or the other by the nearly parallel shear flow between them.
The process is loosely analogous to the production and propagation of vorticity in a
Stokes layer, but with important differences. In the Stokes layer, vorticity transport
is entirely diffusive and vorticity of opposite sign is produced over each half-period
of the oscillation at the boundaries. In the present problem, vorticity is transported
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Figure 10. Self-similarity of the folds for 4 � Gr � 9.

by both convection and diffusion and the vorticity production, while still of opposite
sign over each half-period, is distributed throughout the fluid.

4.3. Intermediate to large Gr (12 � Gr < 18)

As we mentioned earlier, there is a nearly parallel shear flow between the folds.
From figure 7, we see that the width of the folds increases with Gr, which means
that the strength of the parallel shear flow increases with Gr. As Gr increases,
inertia increases, resulting in an increased potential for inertial modes, and diffusion
decreases, weakening the stabilizing mechanism. Thus, at moderate to large Gr, there
is a potential for shear instabilities, such as those observed in free shear layers and
in gravity currents with steady gravity, e.g. Simpson (1969). For 12 � Gr < 18, we
observe a new regime of behaviour, wherein we observe that corrugations start to
develop on the folds. These wrinkles grow in size and eventually small concentration
pockets become detached from the interface and propagate into the flow field. The
propagation of these waves is mainly in the horizontal direction, and the disturbances
are similar in appearance to the Kelvin–Helmholtz billows which have been observed
in gravity currents with steady gravity and, more generally, in free shear layers. Waves
associated with Kelvin–Helmholtz instability have also been observed in Duval &
Jacqmin (1990). Figure 11, wherein we plot only the concentration contours for
C = 0.25 to C = 0.75 for clarity, illustrates this behaviour. The detachment of the
concentration pockets can be seen in panels (e–g) between x ∼ 150 and 200 and
y ∼ 50 and 100. In order to show the corrugations on the folds more clearly, we
have zoomed in figure 12 on a rectangular region with coordinates 0 � x � 200 and
50 � y � 100. The detachment of the concentration pockets from the interface can be
seen in figure 12d, e between x ∼ 150–200 and y ∼ 60–80. Movies 3 and 4 illustrate the
occurrence of Kelvin–Helmholtz instability on the folds and the resulting detachment
of the concentration pockets.

4.4. Large Gr (Gr � 18)

Owing to the formation of folds, there are some regions in the domain where the
net acceleration is directed from the lighter fluid towards the heavy fluid, creating
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Figure 11. The detachment of concentration pockets from the interface due to
Kelvin–Helmholtz instability. t = 21.5π–23.5π in increments of 0.25π, Gr = 14.

the potential for Rayleigh–Taylor instability. Also, an increasing Gr corresponds to
larger density difference, higher acceleration, sharper density gradients, or all three.
Thus, there is an increased potential for Rayleigh–Taylor instability for larger Gr.
For Gr � 18, we observe another new regime of behaviour, in which we observe both
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Figure 12. The detachment of concentration pockets from the interface due to
Kelvin–Helmholtz instability. t = 22π–23π in increments of 0.25π, Gr = 14.

Kelvin–Helmholtz billows and another kind of instability which propagates mainly
in the vertical direction. The snapshots of the concentration field shown in figure 13
reveal the deformation of the interface into a mushroom structure with the interface
rolling up into counter-rotating vortices, which is commonly observed when there is
Rayleigh–Taylor instability (see Sharp 1984; Tryggvason 1988). Tryggvason (1988)
did extensive numerical investigations of the Rayleigh–Taylor instability and found
that when the density difference is small the interface rolls up into two counter-
rotating vortices and when the density difference is large there is no vortex roll-up
and a ‘bubble-spike’ pattern is observed instead. In our study, since the density
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Figure 13. The Rayleigh–Taylor instability. Concentration field for t = 8.5π–10.5π in
increments of 0.25π, Gr = 22.

difference is small, we also observe a mushroom structure with two counter-rotating
vortices. This structure can be seen in figure 13(e–i) between x ∼ 50–150 and y ∼ 300–
350. Movie 5 also illustrates the occurrence of these Rayleigh–Taylor mushrooms.
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Figure 14 presents snapshots of the interface at a later time, t =30π. We see that the
concentration field is very disordered, leading to neither organized Kelvin–Helmholtz
rollers nor Rayleigh–Taylor mushrooms. This disordered concentration field suggests
the possibility of chaotic flow, as a result of these instability modes, which we
investigated by considering the dynamics of point quantities.

4.5. Dynamics of point quantities

In figure 15 we show the variation of the vertical velocity, v, measured at the
point, (x, y) = (98.4375, 218.75), with time, t , for two different Grashof numbers,
Gr = 2, 22. This particular point was chosen because we expect the flow behaviour
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to be complex at points which are either on or very close to the interface (x = 100)
between the fluids. For Gr = 2, the variation of v with t is harmonic, while for Gr = 22,
the variation is periodic for small times (t � 20π), but for later times (20π < t � 50π) it
is aperiodic accompanied by large fluctuations, and at even later times (t > 50π), the
velocity decays to zero. In figure 16 we plot the power spectra of v. For Gr = 2
the spectrum is just a single spike at the forcing frequency. For Gr = 22 we com-
pute the power spectra over two time spans: t =[0 : 120π], which corresponds to the
entire time span, and t =[20π : 50π], which corresponds to the time over which the
velocity variation is aperiodic accompanied by large fluctuations. The motivation for
computing the power spectrum over t =[20π : 50π] is that this is the time span over
which mixing is the most vigorous. Thus we expect the power spectrum over this time
span to have contributions from a range of frequencies. It can be seen that the power
spectra for Gr = 22, over both time spans, while certainly rich, are not broadband.
This suggests that the flow field is not chaotic at x =98.4375, y = 375. We have also
experimented with some other points in the flow field and we could not find any
point where the power spectrum was broadband. We have also experimented with
other flow quantities (horizontal velocity, vorticity, stream function, etc.) and have
observed that they all show the same general trend: harmonic variation for very small
Gr and aperiodic variation for large Gr. Thus we conclude that while the flow field
is certainly disordered at some points, it is not chaotic, over the range of parameters
covered here.

We have repeated the above analysis for points that are far from the interface and
found that for both Gr = 2 and 22, the flow field responds at the forcing frequency.
Thus the flow field is disordered only at points that are either on or close to the
interface.

4.6. Effect of Sc

As we have seen, as Gr is increased we observe first Kelvin–Helmholtz instability
and then Rayleigh–Taylor instability. We varied Sc from 1 to 100 and observed the
transitions in order to find out if the Rayleigh number, Ra =GrSc, is the more relevant
stability parameter. We determined the critical Grashof numbers at which we first



The effects of gravity modulation on fluid mixing. Part 1 465

20

16

12

4

8

0
0 25 50

Sc
75 100

Grc1

Grc2

G
r c

1, G
r c

2

Figure 17. The variation of the critical Gr at which Kelvin–Helmholtz and Rayleigh–Taylor
instabilities first appear, Grc1

,Grc2
respectively, with Sc.

observe Kelvin–Helmholtz instability, Grc1
and that for Rayleigh–Taylor instability,

Grc2
as functions of Sc. In figure 17 we plot Grc1

and Grc2
vs. Sc, from which it can be

seen that the critical Grashof numbers become independent of Sc for moderately large
Sc, suggesting that for the present problem, Ra is not a more relevant parameter than
Gr, and that the mechanisms for exciting the Kelvin–Helmholtz and Rayleigh–Taylor
instabilities are inertial in nature. As Sc decreases, the interface becomes more diffuse,
leading to some degree of stabilization (larger Grc) relative to the sharp interface
case.

4.7. Effect of l

The motivation for varying l is to understand the effect of varying the frequency of the
modulation, ω, on the evolution of the interface. ω appears in two parameters:
the Grashof number, Gr = (�ρ/ρ̄)(g/ω3/2ν1/2) and the non-dimensional domain size,
l = L/δν = L

√
ω/

√
ν. The following combination of the above two parameters,

GrL = Grl3 =
�ρ

ρ̄
g

L3

ν2
,

which represents the Grashof number based on the length of the domain, does not
contain ω. In order to investigate the effect of varying ω, we keep GrL constant at a
representative value, 8 × 106, and vary l. For l = 200, which corresponds to Gr = 1,
we see from figure 18(a) that there are no interfacial folds. When l is reduced to
100, which corresponds to Gr = 8 and to reducing the frequency by a factor of 4,
we observe the formation of folds on the interface, as seen in figure 18(b). When
l is further reduced to 73.6681, which corresponds to Gr = 20 and to reducing the
orginal frequency by a factor of 7.368, we observe the occurrence of Rayleigh–Taylor
instability, as can be seen from the mushroom structures at the top-left and bottom-
right corners of figure 18(c). Thus we see that reducing the frequency, while keeping
all the other parameters except Gr constant, makes the concentration field more
disordered.
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It must be noted that in our analysis, the non-dimensional length of the domain, l,
is typically large, of the order of 100, so that the evolution of the interface, which is
our primary interest, is free from any edge effects over reasonably large times. When
we decrease l, keeping all other parameters including Gr constant, which corresponds
to reducing the dimensional geometric length L of the cavity, we expect the effects of
viscous diffusion to increase.

4.8. Effect of A

We conducted a few studies in order to determine the effect of aspect ratio. We chose
three different aspect ratios, A= 0.5, 1.0, 2.0 which correspond to wide, square, and
narrow cavities respectively. As we pointed out earlier, the number of folds formed
decreases as the aspect ratio is decreased. Since Kelvin–Helmholtz and Rayleigh–
Taylor instabilities occurring on the interfacial folds are responsible for making the
flow field disordered we expect that the flow field will be less disordered for low A,
which in turn suggests that the mixing will be reduced for low A. Figure 19 shows
the fractional mixing volume, Vm, defined as the fraction of the total volume wherein
the concentration values lie between 0.45 and 0.55. As A is decreased the fractional
mixing volume is decreased, which means that mixing is suppressed. We have also
investigated the effect of A on Grc and observed that Grc1

and Grc2
are independent

of A, which is consistent with our conclusion that the mechanisms for the Kelvin–
Helmholtz and Rayleigh–Taylor instabilities are local.



The effects of gravity modulation on fluid mixing. Part 1 467

Time (in periods)

Vm

10 20 30 400

0.2

0.4

0.6

0.8

1.0

Gr = 18, A = 0.5

Gr = 18, A = 1.0

Gr = 18, A = 2.0

Figure 19. The variation of the fractional mixing volume, Vm vs. A.

Vm

Time (in periods)
10 20 30 40 50 600

0.2

0.4

0.6

0.8

1.0

Gr = 2
6
12
18
24

Figure 20. The variation of the mixing volume, Vm with time for different Gr.

4.9. Mixing

We adopt two measures to quantify mixing: the fractional mixing volume defined in
the previous subsection and the length stretch of a material line which is initially
coincident with the interface between the fluids.

In figure 20 we plot the variation of the fractional mixing volume, Vm, defined
in the previous subsection, with time for different values of Gr. It can be seen that
the mixing volume increases with time and also that, in general, it increases with
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increasing Gr. This is consistent with our observation that as Gr is increased the flow
field becomes more disordered thus resulting in better mixing.

Mixing involves stretching and folding of material elements (see Ottino 1989, p. 64).
Thus computing the stretch of a material line is useful in characterizing the
effectiveness of the flow field in causing mixing. The material line stretch is defined as
d ′ = (d − d0)/d0, where d0 is the initial length of the material line and d is the length
of the material line at time t . We consider a material line initially coincident with
the interface, therefore d0 is equal to the height of the domain, d0 = lA. We mention
that this material line stretch is different from the interfacial length stretch which is
measured in Duval (1992). As mentioned in Ottino (1982), material lines and surfaces
do not break or change topology. In contrast, the interface, which has been previously
defined as the iso-concentration line (C = 0.5), may break up as illustrated in figures
12 and 14. Thus, the material line stretch and the interfacial length stretch are two
different quantities.

In what follows, we briefly describe the algorithm used to compute the material line
stretch. The material line is initially populated by N uniformly spaced passive particles.
These particles are advected using the equations dxp/dt = up and dyp/dt = vp where
(xp, yp) are the spatial coordinates of particle p and (up, vp) are the flow velocity
components at (xp, yp). These velocities are obtained by linear interpolation of the
flow velocities at the nodes and the particle positions are advanced in time using
the classical fourth-order Runge–Kutta method. The material line is approximated as
the sum of straight lines between two adjacent particles. As the material line stretches
and folds, we may need to increase the number of particles in order to represent the
material line accurately. However, for the range of parameters and times that are
considered in this paper, N = 10000 particles seem more than sufficient to accurately
describe the evolution of the material line.

In figure 21 we show a typical line stretch with time. For small times, there is a very
rapid increase in the length of the material line. With time, the rate of increase of the
length slows down and eventually the length of the material line becomes constant.



The effects of gravity modulation on fluid mixing. Part 1 469

d′

2 4 6 8
0

0.05

0.10

0.15

0.20

Gr = 18 data
Exponential fit

Time (in periods)

Figure 22. Exponential fit for the line stretch for t � 11π for Gr = 18. d ′ = m exp(b t) + n
with m= 0.003936, b = 0.570091, and n= −0.003553.

The reason for this behaviour is explained as follows. The interaction between the
concentration gradients and gravity is the driving force behind the flow. Thus for
small times the stretch rate is very rapid because the initial concentration gradients
are large and with time, as the fluids mix, the concentration gradients decrease in
magnitude, the velocities diminish, as does the stretch rate. Eventually, as the fluids
become well-mixed, the concentration in the entire domain is the same (C = 0.5).
Therefore, there is no concentration gradient and hence no flow. Thus we expect the
length of the material line to increase very rapidly for small times and with time
the rate of stretch slows down and eventually goes to zero. For small times, the
rapid increase in the length of the line is represented well by an exponential fit,
d ′ =m exp(b t) + n shown in figure 22. In figure 23 we plot the exponents b, obtained
from the exponential fit, as a function of Gr. It can also be seen that for small to
moderate Gr, the exponents are almost constant and for moderate to large Gr, the
exponents increase with Gr. In figure 24 we show the variation of line stretch with
time for various Gr. For small times, the line stretch increases with Gr. At later
times, the line stretch for a flow with low Gr may be higher than that for a flow
with higher Gr. The reason for this is explained as follows. A flow with higher Gr is
more disordered than one with a lower Gr, thus the rate of mixing is initially higher.
Therefore, the fluids become well-mixed faster and the line stretch becomes constant
sooner for a flow with high Gr. At later times, the concentration gradients are higher
for a flow with a lower Gr and hence the stretch of the material line is larger.

5. Effect of phase angle, φ
The gravity modulation is of the form cos(t + φ). When φ = 0, gravity is initially

positive and after a time t = 1
2
π, it becomes negative. In contrast, when φ = 1

2
π,

gravity is negative over the times 0< t < π and after a time t = π, it reverses its sign.
Thus, changing the phase angle changes the time over which the first sign reversal
of gravity occurs. Of course, changing the phase angle affects only the time of the
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first sign reversal; later sign reversal periods are π for all φ. We expect this first sign
reversal time to affect the flow and concentration fields because of finite fluid inertia.
Investigating this effect is the motivation for varying the phase angle, φ. It should
also be noted that the maximum first sign reversal time is π, which occurs for φ = 1

2
π

and 3
2
π. We therefore expect the effect of the phase angle to be maximum for these

two values.
When the phase angle of the gravity modulation, φ �= 0, π, the resulting flow initially

closely resembles a lock-exchange flow (see Simpson 1969). For the moment we set
Sc= 1 and δ = 5. We fix the aspect ratio of the domain, A= 1

5
and the length of
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the domain, l = 1000. The reason for this rather large domain length is explained in
the next paragraph. Unless otherwise specified, the phase angle of the modulation,
φ = 1

2
π. We have also experimented with other values of φ = 1

4
π, 3

4
π, . . . and found

that the flow regimes are the same as those when φ = 1
2
π.

When φ =0, it was observed that the interface oscillates about the vertical centreline
of the domain, i.e. the net displacement of the interface along the top (and bottom)
wall after each time period is very small (figure 3). However, when φ = 1

2
π, a gravity

current is formed because of finite fluid inertia and there is significant movement
of the interface along the top and bottom walls. We refer to this displacement
(measured from the centreline) as the ‘coasting distance’, a. Figure 25(a) illustrates
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Figure 26. The concentration fields for (a) Gr =10, (b) Gr = 14, and (c) Gr = 20
when t = 10 periods. φ = 1

2
π.

this movement for the cases when φ = 0, 1
4
π, and 1

2
π. It can be seen that for non-zero

φ, the coasting distance increases with time and eventually becomes constant. The
following expression was found to fit the data well:

a = αe−ζ t + a∞ + κ cos(t). (5.1)

This expression suggests that after initial transients, the interface on the top and
bottom walls oscillates about the final coasting distance, a∞, with a small amplitude
κ (κ � a∞); a∞ increases with φ and as expected is maximum for 1

2
π. It can be quite

large, of the order of 100 viscous lengths, necessitating a large l. From figure 25(b)
we see that both a∞ and κ increase with Gr, because of the increase in inertia.

The inertial movement of the interface results in a significant change in the concen-
tration profiles and we investigate if there are any changes in the flow regimes. As Gr is
increased we observe the following progression of flow regimes: smooth propagation
of the gravity current (figure 26a); localized shear instabilities (figure 26b); and
localized shear and convective instabilities (figure 26c). The critical Gr for the onset
of the Kelvin–Helmholtz and Rayleigh–Taylor instabilities, Grc1

and Grc2
respectively,

are unchanged by the variation in φ. The different flow regimes with increasing Gr
can also be seen in movie 6.

The motivation for phase averaging is to investigate what happens when the gravity
modulation involves more than one phase. Phase averaging in the case of harmonic
modulation is analogous to ensemble averaging for stochastic modulation, the effects
of which will be investigated in a future paper. The phase-averaged concentration
fields are obtained by averaging the concentration fields corresponding to various
phase angles from 0 to 2π, in increments of 1

8
π. In figure 27 we present the phase-

averaged concentration fields for Gr = 10 and 14 at t =30π. We present only the
concentration contours from 0.25 to 0.75. We observe the formation of a banded
structure which spreads dispersively. This banded structure can be explained as
follows. When the phase angle is between 0 and 1

2
π or between 3

2
π and 2π, gravity

is initially positive and the interface initially coasts to the left in the bottom half of
the domain. However, when the the phase angle is between 1

2
π and 3

2
π, gravity is

initially negative and the interface initially coasts to the right in the bottom half of
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Figure 27. The phase-averaged concentration field for (a) Gr = 10, A = 1
5

and

(b) Gr =14, A = 1
5

at t =30π.

the domain. Thus when we average over all the phase angles from 0 to 2π, we get a
banded structure in the centre of the domain, which is composed of the individual
interfaces, corresponding to the different φ between 0 and 2π. Since the individual
interfaces move at different speeds as suggested by figure 25(a), the spread of the
banded structure is dispersive. The outer limits of this banded structure are determined
by the positions of the deformed interface when φ = 1

2
π and 3

2
π. The spread of this

banded structure is larger for Gr =14 because of the increased inertia compared to
when Gr = 10. The phase-averaged concentration fields are also presented in movie 7.

6. Summary
We have investigated the physical mechanisms by which harmonic gravity

modulation affects the mixing of two miscible fluids which are initially separated
by a thin vertical diffusion layer. The Boussinesq approximation was invoked and the
resulting equations were solved numerically and the evolution of the flow field was
observed. The problem was found to be governed by six parameters: the Grashof
number, Gr; the Schmidt number, Sc; the aspect ratio of the domain, A; the non-
dimensional length of the domain, l; the phase angle of the gravity modulation, φ;
and the steepness of the initial concentration profile, δ.

When φ = 0, π, as Gr is varied we observe four different flow regimes. For very small
Gr, we find neutral oscillations of the interface at the forcing frequency. For small to
moderate Gr, we observe that folds start to form on the interface and the propagation
of these folds is found to be self-similar and due to diffusion. For moderate to high
Gr, we observe localized Kelvin–Helmholtz instability on the folds which results in the
detachment of small concentration pockets from the interface. When Gr is high we
observe both Kelvin–Helmholtz and Rayleigh–Taylor instabilities leading to a highly
disordered flow field. An investigation of the dynamics of point quantities suggested
that even though the flow is disordered, it is not chaotic. The length stretch of a
material line initially coincident with the interface is found to be exponential for small
times. It is also observed that larger Gr lead to increased fluid mixing. By varying
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Sc, we found that Gr is indeed the relevant stability parameter and that the driving
mechanism for these instabilities is inertial in nature. By varying the non-dimensional
length l, while keeping Grl3 constant, we found that low-frequency modulation leads
to a more disordered concentration field. The flow field is found to be less disordered
for low A which explains the low mixing.

When φ �= 0 or π, the flow is similar to a lock-exchange flow, which is observed in the
context of gravity currents with steady gravity. We observe three different flow regimes
as Gr is varied: smooth propagation of the gravity current; localized shear instabilities;
and localized shear and convective instabilities. Phase-averaged concentration field
shows the formation of a banded structure which spreads dispersively, and whose
spread increases with Gr, due to the increased inertia.

It now remains to compare our results for φ = 0 with those of Duval & Jacqmin
(1990), who studied a similar problem, but with different boundary conditions. In both
our study and theirs, the basic flow patterns are similar and the flow becomes more
disordered as a critical parameter is varied. However, we do find some significant
differences. The flow regime in which the interfacial folds propagate self-similarly is
not identified in their study. They observed that as the Stokes-Reynolds number, ReS

(which corresponds to Gr in our study) is increased Kelvin–Helmholtz instability is
observed first and then and as ReS is increased above a critical value (ReS � 5.25)
‘chaotic’ instability, associated with interfacial breakup, is observed. They postulated
that Rayleigh–Taylor instability leads to the breakup of the interface, while we observe
that the interfacial breakup occurs because of Kelvin–Helmholtz instability.

This work was supported by the Microgravity Science Program of NASA.
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